

Tevatron Physics

Fermilab Physics Advisory Committee – 3 November 2008

Marco Verzocchi Fermilab / PPD

- Status and performance: accelerator and experiments
- Tevatron legacy measurements:top and W mass
- Indirect constraints on the Higgs mass
- Higgs searches and related SM measurements
- New b-physics and spectroscopy results
- New physics

Tevatron Performance

5,000

4,500

(a) 4,000

(b) 2,000

(c) 2,000

(d) 1,000

(e) 2,000

(e)

Surpassed target integrated luminosity for FY08:

- increased stacking rate
- shorter turnaround time
- stability of machine (106 hours/week)
- improved luminosity lifetime

FY09 started well (1 week shutdown for work on powerlines to Fermilab)

More accelerator performance plots in the backup material

▼ Fiscal Year 04 • Fiscal Year 03 ▶ Fiscal Year 02

CDF and DØ Performance

CDF: 5.23 fb⁻¹ delivered

4.30 fb⁻¹ recorded

DØ: 5.20 fb⁻¹ delivered

4.54 fb⁻¹ recorded

Following up quickly with reconstruction, analysis and publication of results

Presented analyses with 3 fb⁻¹ at ICHEP this past summer

Analyses with over 4fb⁻¹ of data to be presented at Winter 09 conferences

CDF and DØ Physics Results

2008 is already a record year for both experiments

5 plenary presentations at ICHEP 40 parallel talks

Both experiments are still attractive to new students/postdocs

80 PhD theses defended in 2007, 40 so far in 2008

Example: DØ - 22 new PhD students + 8 postdocs since January

Too many results for 20 minutes....

Example: CDF web pages with new results for Summer 2008: over 50 new results (similarly for DØ)

Will focus on a subset of new physics results since last PAC meeting

Constraining m_H: m_{top}

CDF: $m_{\downarrow} = 172.2 \pm 1.0 \pm 1.3 \text{ GeV}$

Most relevant channels now 2.7 fb⁻¹

World average top quark mass (ICHEP 08)

$$m_{t} = 172.4 \pm 0.7 \pm 1.0 \text{ GeV}$$

0.7 % precision

$$DØ: m_{t} = 172.2 \pm 1.0 \pm 1.4 \text{ GeV}$$

Constraining m_H: m_W

Current m_w world average: precision 25 MeV (CDF best single experiment result)

CDF: working on 2.4 fb⁻¹ analysis Expect to have measurement with precision equivalent to world average

m_{μ+μ}· (GeV/c²) **DØ:** publish 1 fb⁻¹ analysis soon

Constraining m_H: Electroweak Fits

Impact of uncertainties on M _H :			
$\Delta M_{t} = \pm 1.2 \text{ GeV}$	$\Delta M_{\rm H} = +9/-8 \text{ GeV}$		
$\Delta M_{\rm w} = \pm 25 \text{ MeV}$	$\Delta M_{_{\rm H}} = -13/+17 \text{ GeV}$		
$\Delta\alpha^{(5)}_{had} = \pm 0.00035$	$\Delta M_{_{\rm H}} = -15/+17 \text{ GeV}$		

Diboson Processes at Tevatron

Both CDF and DØ combine ZZ \rightarrow IIvv and ZZ \rightarrow IIII channels to obtain 4.4 σ and 5.7 σ significance respectively

Cross sections measured in agreement with SM prediction of 1.4 pb

... now also with Hadronic W/Z Decays

Select sample of qqlv events in 1.1 fb⁻¹ of data

Cannot separate W and Z→qq, measure sum of two processes

Use Random Forest discriminant to separate signal (600 events) from background (27k events)

Measure σ =20.2±2.8(stat)±4.9(syst)±1.1(lum) pb (4.4 σ)

SM $\sigma = 16.1 \pm 0.9 \text{ pb}$

Main systematics: background (W+2jets) shape, jet energy scale, cross sections

With more data: observe Z→bb, separate W/Z contributions to signal

Single top Production

Both CDF and DØ now have evidence for single top production, reach 5 σ soon

Smallest cross section measured in final states containing jets

Higgs Searches (March 2008)

Tevatron combination limit/SM:

- 6.8 at m_H=120 GeV/c²
- 1.1 at m_H=160 GeV/c²

Since then: analyzed more data, improvement in the analyses, more channels added at low $\rm m_{_{\rm H}}$

Higgs Searches (Low m_H)

- WH→Ivbb (most sensitive channel at low m₁)
- Signature: high p_r lepton, MET and b jets

- Backgrounds: W+bb, W+qq(mistagged), single top, Non W(QCD)
- Key issue: estimating W+bb background
 - Shape from MC with normalization from data control regions

Innovations:

CDF: 20% acceptance gain from isolated tracks, ME with NN jet corrections

DØ: 20% acceptance gain from forward leptons, use 3 jet events

Results at $m_{_{\rm H}}$ = 115 GeV: 95%CL Limits/SM

Analysis	Lum (fb ⁻¹)	Higgs	Limit (σ/SM)	
		Events	Exp.	Obs.
CDF NN	2.7	8.3	5.8	5.0
CDF ME+BDT	2.7	7.8	5.6	5.7
DØ	1.7	7.5	8.5	9.3

Other SM Higgs Searches

- CDF and DØ are performing searches in every viable mode
 - CDF/DØ: WH→WWW: same sign leptons
 - Adds sensitivity at high and intermediate masses
 - Also fermiophobic Higgs search
 - CDF: VH→qqbb: 4 jets mode
 - CDF: H→ττ with 2jets
 - Simultaneous search for Higgs in WH/ZH, VBF and gg→H production modes
 - Interesting benchmark for LHC
 - **▶ DØ:** $H \rightarrow \gamma \gamma$
 - Also model independent and fermiophobic search
 - DØ: WH→τvbb, new mode
 - lacktriangle Dedicated search with hadronic au decays
 - DØ: ttH, new mode

Results at $m_H = 115$ GeV or 160 GeV: 95%CL Limits/SM

Analysis	Limit (σ/SM)		
	Exp.	Obs.	
CDF WH→WWW	33.0	31.0	
DØ WH→WWW	20.0	26.0	
CDF Vh→qqbb	37	37	
CDF H→ττ	25	31	
D0 WH→τνbb	42	35	
D0 Η→γγ	23	31	

Higgs Searches (High m_H)

- H→ WW→ Iv Iv
- Signature: Two high p_T leptons and MET

- Primary backgrounds: W pair production and top in di-lepton decay channel
- Key issue: Maximizing lepton acceptance

Innovations:

CDF/DØ: Inclusion of acceptance from

WH/ZH(CDF) and vector boson fusion

CDF: Combination of ME and NN approaches

DØ: Reoptimized NN

Results at $m_{\parallel} = 165 \text{ GeV}$: 95%CL Limits/SM

Analysis	Lum (fb ⁻¹)	Higgs	Limit (σ/SM)		
		Events	Exp.	Obs.	
CDF ME+NN	3.0	17.2	1.6	1.6	
DØ NN	3.0	15.6	1.9	2.0	

Single Experiment Combinations

- Limits calculating and combination
 - Using Bayesian and CLs methodologies.
 - Incorporate systematic uncertainties using pseudo-experiments (shape and rate included) (correlations taken into account between experiments)
 - Backgrounds can be constrained in the fit

ICHEP 2008 limits

- Low mass combination challenging due to ~70 analyses
 - Expected sensitivity of CDF/DØ combined: <3.0*SM @ 115GeV

First Exclusion at High m_H

Exp. 1.2 @ 165, 1.4 @ 170 GeV

Obs. 1.0 @ 170 GeV

SM Higgs of 170 GeV excluded at 95%CL

Tevatron Run II Preliminary, L=3 fb⁻¹

Result verified using two independent methods(Bayesian/CLs)

MSSM Higgs Searches

 $H \rightarrow \tau \tau$ main search channel

Use $b\Phi$ associated production to extend searches to Z peak region (bbb and $b\tau\tau$ final states)

First Tevatron combination available soon

Exclude high tanβ region

CP Violation in J/ψ φ

First combination of CDF and DØ results without assumptions on strong phases: compatible at 2.2 standard deviations level with SM (p-value 0.031)

CDF: updated result with 2.8 fb⁻¹ Inconsistency with SM increased (p-value from 0.15 to 0.08, corresponding to 1.8 standard deviations)

More data to come, look also in other channels (asymmetry in semileptonic decays)

$\Omega_{\rm b}$ Observation @ DØ

Reconstruct complicate decay chain

Ω candidates selected with multivariate technique to reduce background

Combine with J/ψ

Observe 17.8±4.9±0.8 candidates

$$m_{\Omega_{h}} = 6.156 \pm 0.010 \pm 0.013 \text{ GeV}$$

5.4 standard deviation observation

Another discovery in spectroscopy of b-hadrons

Physics beyond the SM

No evidence for new physics found in dedicated model driven analyses

Still room for surprises, few discrepancies at the $2-3\sigma$ level

Future Perspectives

Conclusions

- Strong motivation to continue running in 2010
- Could surpass current predictions for integrated luminosity
- Place strong constraints on / Obtain evidence for SM Higgs
- Improve top and W mass measurements
- Continue investigation of B_e system
- Much room for improvement in channels where current analyses use only 1-2 fb-1 (reach 8 fb-1/experiment)
- More personnel available in both Collaborations than foreseen

Backup Slides

Higgs Searches (Low m_H)

- ZH→vvbb, WH→lvbb(I not detected)
- Signature: MET and b jets
 - Primary backgrounds: QCD b jets and mistagged light quark jets
 - Key issue: Building a model of the QCD background
 - Shape from 0 and 1 b tagged data samples with tag and mistag rates applied

Innovations:

CDF/DØ: Use of track missing p_T to define control

regions and suppress backgrounds

CDF: Uses of H1 Jet Algorithm combining

tracking and calorimeter information

3 jet events including $W \rightarrow \tau v$ acceptance

DØ also performs a dedicated $W\rightarrow \tau v$

Results at $m_{_{\rm H}}$ = 115 GeV: 95%CL Limits/SM

Analysis	Lum (fb ⁻¹)	Higgs	Limit (σ/SM)		
		Events	Exp.	Obs.	
CDF NN	2.1	7.3	6.3	7.8	
DØ	2.1	3.7	8.4	7.9	

Higgs Searches (Low m_H)

- ZH→IIbb
- Signature: two leptons and two b jets
 - Primary background: Z + b jets
 - Key issue: Maximize lepton acceptance and b tagging efficiency

Innovations: CDF/DØ: Extensive use of loose b tagging

CDF: Use of isolated tracks and calorimeter only electrons

MET used to correct jet energies, New ME analysis

DØ: Multiple advanced discriminates, NN and BDT

Results at $m_{_{\rm H}} = 115$ GeV: 95%CL Limits/SM

Analysis	Lum (fb ⁻¹)	Higgs	Limit (σ/SM)	
		Events	Exp.	Obs.
CDF NN	2.4	1.8	11.8	11.6
CDF ME(120)	2.0	1.4	15.2	11.8
DØ	2.3	2.0	12.3	11.0